Connectivity Threshold of Random Geometric Graphs with Cantor Distributed Vertices

نویسندگان

  • Antar Bandyopadhyay
  • Farkhondeh Sajadi
چکیده

For connectivity of random geometric graphs, where there is no density for underlying distribution of the vertices, we consider n i.i.d. Cantor distributed points on [0, 1]. We show that for this random geometric graph, the connectivity threshold Rn, converges almost surely to a constant 1−2φ where 0 < φ < 1/2, which for standard Cantor distribution is 1/3. We also show that ‖Rn − (1− 2φ)‖1 ∼ 2C (φ) n−1/dφ where C (φ) > 0 is a constant and dφ := −log 2/log φ is a the Hausdorff dimension of the generalized Cantor set with parameter φ.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Random Geometric Graphs

We provide the first analytical results for the connectivity of dynamic random geometric graphs-a model of mobile wireless networks in which vertices move in random (and periodically updated) directions, and an edge exists between two vertices if their Euclidean distance is below a given threshold. We provide precise asymptotic results for the expected length of the connectivity and disconnecti...

متن کامل

Connectivity threshold of Bluetooth graphs

We study the connectivity properties of random Bluetooth graphs that model certain “ad hoc” wireless networks. The graphs are obtained as “irrigation subgraphs” of the well-known random geometric graph model. There are two parameters that control the model: the radius r that determines the “visible neighbors” of each vertex and the number of edges c that each vertex is allowed to send to these....

متن کامل

On the Isolated Vertices and Connectivity in Random Intersection Graphs

We study isolated vertices and connectivity in the random intersection graphG n,m, p . A Poisson convergence for the number of isolated vertices is determined at the threshold for absence of isolated vertices, which is equivalent to the threshold for connectivity. When m n and α > 6, we give the asymptotic probability of connectivity at the threshold for connectivity. Analogous results are well...

متن کامل

The Structure of Geographical Threshold Graphs

We analyze the structure of random graphs generated by the geographical threshold model. The model is a generalization of random geometric graphs. Nodes are distributed in space, and edges are assigned according to a threshold function involving the distance between nodes as well as randomly chosen node weights. We show how the degree distribution, percolation and connectivity transitions, clus...

متن کامل

On the mixing time of geographical threshold graphs

We study the mixing time of random graphs in the d-dimensional toric unit cube [0, 1] generated by the geographical threshold graph (GTG) model, a generalization of random geometric graphs (RGG). In a GTG, nodes are distributed in a Euclidean space, and edges are assigned according to a threshold function involving the distance between nodes as well as randomly chosen node weights, drawn from s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012